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Abstract—This paper aims at quantifying the value of a
lifetime-constrained battery energy storage system (BESS) oper-
ated by a consumer who faces fluctuating electricity prices. We
define the lifetime of the BESS as the serving duration within
which the BESSs capacity stays above a certain threshold of its
initial capacity and define the value of the BESS as the total peak-
shaving value within its entire lifetime. Under the assumption that
the price dynamics are Markovian, we show that maximizing
the average value of the BESS can be formulated as a stochastic
shortest path (SSP) problem, and the average lifetime corre-
sponds to the average number of steps before being absorbed in
the SSP problem. We propose an efficient parallel value iteration
algorithm to solve the proposed SSP problem with guarantees of
achieving optimality and a fast convergence. We also derive a
closed form expression for the average lifetime based on the
principle of an embedded absorbing Markov chain. We validate
our model and algorithm on a practical BESS via real price
data sets from two different markets. Comparison of the com-
putational efficiency between the standard Gauss–Seidel value
iteration and our parallel algorithm is also illustrated through
extensive simulation.

Index Terms—Absorbing Markov chain (AMC), battery energy
storage (BES), stochastic shortest path (SSP), value and lifetime.

I. INTRODUCTION

DUE TO the rapid increase in electricity demand and
the global need for carbon emission reduction, the

nature of the traditional highly centralized energy system
is changing [1]. Specifically, at the architectural level, we
are now increasingly relying on distributed generation, which
requires fundamentally different and preferably decentral-
ized energy system architecture in almost all parts of the
power generation, transmission, distribution, and consump-
tion. Meanwhile, at the market level, due to the deregulation
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of electricity markets [2], a more active involvement of
energy users (EUs) through a demand response mechanism is
becoming ubiquitous, which necessitates active demand-side
management via advanced communication and computation
technologies.

Facing these architectural and technological transforma-
tions, there exist many new challenging problems such as the
intermittency of power from wind and solar radiation, and the
spatial and temporal uncertainty of power-intensive demand
from electric vehicles. Battery energy storage (BES) may help
mitigate the afore-mentioned problems, and it is even argued
that in many cases, energy storage will be a complete solu-
tion [4]. Currently, around 2.3% of the total energy delivered in
the U.S., 15% of the supplied electricity in Japan, and close to
10% of that in Europe are cycled by energy storage [5], [6].
Especially, in a deregulated dynamic electricity market, the
spot prices of electricity vary hourly and thus can provide
peak-shaving opportunities for energy storage: buying energy
when the prices are low and discharging energy from the stor-
age to reduce the demand peaks when the prices are high.
For instance, in cities such as San Francisco and New York
where electricity is costly, large commercial buildings are
installed with batteries in their basements, for the purpose of
buying and storing electricity at night when prices are low,
and tapping into the batteries during peak afternoons when
prices are high [7]. Another motivating example comes from
the recently launched Powerwall BES system (BESS) from
Tesla [8]. Powerwall is a home-level BESS that is charged
with electricity generated from solar panels, or when utility
rates are low, and powers EUs’ home in the evening. It is
believed that there will be an intense competition in home-
level BESS in the near future [9], and we believe that this
competition will further drive the popularity of distributed
micro-scale BESS.1

Based on the specific application scenarios, a BES sys-
tem (BESS) can provide different values for the corresponding
battery operators. For instance, other than the afore-mentioned
peak-shaving value, a BESS can also help smooth the dis-
tributed generation and increase the reliability and feasibility
of the power system by providing regulation services, etc.
Unfortunately, however, the uncertainty is a major issue that

1Note that the term “distributed” means that the BESS is distributed at
each individual EU level, and the term “micro-scale” refers to the size of
the energy storage compared to its counterpart “grid-scale,” with a capacity
ranges from a few to dozens of kilowatt hours.
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hinders the deployment of BESSs, and this uncertainty mainly
stems from the following issues.

1) Batteries have a high initial capital cost and com-
paratively high holding/maintenance cost; thus, those
planning and operating a BESS may face a considerable
amount of up-front uncertainty [10].

2) Batteries have limited lifetime2 and will physically dete-
riorate during their usages, and more importantly, their
lifetime is often highly usage-dependent [10]; hence, the
future value of a BESS will be highly uncertain.

Therefore, the availability of econometric models that can
quantify the value of a BESS with lifetime impact considera-
tion is of paramount importance. Without such an econometric
model, all the potential advantages of BES may not materialize
due to underinvestment [11].

At present, there exist extensive models for quantifying
how much value a storage system can achieve if it is oper-
ated under certain strategies [4], [11]–[14]. In particular,
Mokrian and Stephen [4] presented a stochastic programming
framework for analyzing the arbitrage value of energy stor-
age over a fixed horizon of 24 h, and Faghih et al. [11]
analyzed the finite-horizon economic value of energy storage
with a ramp constraint in response to stochastically vary-
ing electricity price. When the value is defined to be the
negative total discounted energy costs over the infinite time
horizon, van de Ven et al. [12] proposed an optimal threshold-
structured control policy, which enables the consumer to
minimize its energy cost by exploiting price variations. More
recent works [13] and [14] further showed some interesting
results in different aspects of the economic value of storage.
Specifically, Xu and Tong [13] showed that if the value of
storage is defined as the finite-horizon arbitrage value and the
electricity purchasing price are always equal to the price of
selling that stored energy back to the grid. Then, the value of
storage is independent of the operator’s power demand, which
is equal to the pure arbitrage value of the storage. Different
from the single storage device in [13], Erseghe et al. [14] pro-
posed a control policy based on dynamic programming, which
minimizes the infinite-horizon long-term average cost for an
energy storage system with multiple batteries.

To the best of our knowledge, all of the above works are
based on the assumption that the operational horizon of a
BESS is prespecified, either finite (for short-term schedul-
ing, see [4], [11], [13]) or infinite (for long-term scheduling,
see [3], [12], [14]), and that the operator operates the BESS
(see the buy–hold–sell action for energy trading [11]) until
an explicit exit moment. However, in fact, when the lifetime
of the BESS is taken into account, as we have previously
shown in [16] and [17], the operator typically faces a policy-
dependent yet uncertain exit time (since the lifetime varies
greatly under different policies), which is neither determin-
istically finite nor infinite. To this end, we have previously
studied the economic value analysis of BES based on given
electricity prices [16] and stochastically varying prices [17],
with particular interests on the impact of limited lifetime on

2A BESSs lifetime is usually defined to be the serving duration within
which its energy capacity stays above a particular threshold of the initial
capacity [10]. For instance, in practice, a typical value for this threshold is
80% [10], [23].

the value of batteries. However, there still exist open ques-
tions about the value and lifetime of a BESS under a dynamic
electricity market.

1) What exactly is the value that a BESS can provide during
its total lifetime?

2) What is the lifetime of a BESS if operated under certain
strategies?

3) How do the value and lifetime performance intertwine
with each other?

In this paper, we are motivated to answer the above ques-
tions by proposing a general yet practical optimization frame-
work, which quantifies the value and lifetime of a micro-scale
BESS in a dynamic electricity market. The model is general in
the sense that it can be applied for the BESS in different appli-
cation scenarios with different definitions of the “value,” and
it works for different types of batteries as long as we accept
the value and lifetime performance in their expectation forms.
The results of this paper can be summarized as follows.

1) We model the problem of maximizing the total expected
peak-shaving value of a BESS in the presence of
lifetime and ramp constraints as a stochastic shortest
path (SSP) problem. This novel SSP model character-
izes the relationship between the battery usage and its
remaining lifetime, thus providing a general framework
for quantifying:

a) the value of the BESS over its entire lifetime;
b) the average lifetime of the BESS under any feasible

operational policy.
2) Using the principles of stochastic dynamic programming,

we propose the hybrid sequential–parallel value itera-
tion (HSPVI) algorithm, with guaranteed convergence
and optimality, to solve the proposed SSP problem. The
HSPVI algorithm leverages its parallel advantage and
obtains the average value of the BESS very efficiently.
Numerical results show a great advantage of our algo-
rithms in computational efficiency in comparison with
the standard Gauss–Seidel value iteration (GSVI)
approach, and many implementation insights for practical
battery operators have been obtained.

3) Based on the embedded absorbing Markov chain (AMC)
for the proposed SSP problem, we derive a closed-form
expression for the average lifetime. Furthermore, we theo-
retically show the impact of several important cost factors
on the value and lifetime of the BESS, and analyze the
value and lifetime tradeoff on the operation of the BESS.

The rest of this paper is organized as follows. In Section II,
we introduce a dynamic battery model and formulate the com-
putation of the value and lifetime of the BESS as an SSP
problem. We propose the HSPVI algorithm in Section III, and
subsequently, we study the lifetime performance of the BESS
in Section IV based on the embedded Markov chain analysis.
Finally, we provide a real data simulation in Section V and
conclude this paper in Section VI.

II. MODEL AND PROBLEM FORMULATION

A. Dynamic BESS Model

We consider a slotted time model similar to [16] and [17].
The time horizon is denoted as T = {0, 1, . . .}, and t ∈ T
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denotes the discrete time index corresponding to the epoch
for the time interval (t, t + 1] with length of � (see 1 h).
Let s0 denotes the initial battery capacity, and let st denotes
the current capacity of the battery at time t ≥ 1. The energy
level of the battery at time t, denoted by bt, evolves according
to the following model:

bt+1 = bt + ηcct − 1

ηd
dt (1)

where ct denotes the charging rate, and dt denotes the dis-
charging rate. Both ct and dt are bounded by the battery’s
power rating, i.e., ct ∈ [0, cmax] and dt ∈ [0, dmax], where cmax

and dmax are charging and discharging power ratings, respec-
tively. In practice, the energy level bt is normally bounded
within a safe region [γ1st, γ2st], where the values of γ1 and γ2
are determined by the battery operator based on the preferred
depth of discharge (DoD). If we denote the DoD as �DoD,
then �DoD ∈ [0, 100%]. For example, the battery operator can
choose �DoD = 90%, γ1 = 10%, and γ2 = 90%.

B. Ah-Throughput Lifetime Model

Typically, a battery’s lifetime is expressed in cycles, mea-
sured at a specific DoD. However, in practice, it is often
difficult to find an accurate relationship between the remaining
life cycles and how it is charged/discharged due to irregu-
lar charge/discharge profiles [10], [23]. Fortunately, another
representative measure of battery life, the lifetime energy
throughput (LET), which is measured by the amount of energy
that can be cycled through a battery before requiring replace-
ment, is demonstrated to be an easy-to-calculate yet accurate
model to measure the remaining lifetime of a battery during the
irregular charging/discharging process (see the Ah-throughput
model [10], [15]–[17]). Note that in most practical cases, the
initial LET is estimated from the DoD versus cycles to fail-
ure curve provided by the battery manufacturer [10]. To be
more specific, let C denotes the nominal battery life cycles at
a DoD of �DoD and suppose that its initial LET is θ0. Then,
according to [10], we have

θ0 = Cs0�DoD. (2)

Furthermore, we denote θt as the remaining throughput at
time t ≥ 1. Therefore, according to the Ah-throughput model,
θt decreases according to

θt = θ0 − �

t−1∑

τ=0

(
ηccτ + dτ

ηd

)
, ∀t ≥ 1. (3)

Note that, the above formulation (3) implies that both the
charging and discharging behaviors equally affect the BESSs
lifetime, as long as the BESS is operated under a fixed DoD.3

Note that during the charging/discharging process, the
capacity st also degrades with the decrement of θt, and we
consider that the relationship between θt and st is captured
by function st = f (θt, s0, ρ), where ρ takes values between
0 and 1, and it is the threshold for the capacity decaying, below
which the operator is obligated to replace the battery (i.e., the

3As mentioned in [10], it is also possible to further introduce two weighting
factors to balance the charging and discharging effects. However, without loss
of generality, we keep using the formulation (3) throughout this paper.

case of θt = 0 corresponds to the battery using up all its LET
and reaching the end-of-lifetime). Note that different batteries
may have a different capacity decaying function f , which is
an important feature reflecting the properties of the battery
technology.4 However, f (θ0, s0, ρ) = s0 and f (0, s0, ρ) = ρs0
should always hold. For instance, in [16], it is assumed that
f (θt, s0, ρ) = s0(ρ + ((1 − ρ)/θ0)θt), which translates into a
linear degradation assumption on the battery capacity. Despite
the importance of the capacity decaying function, the detailed
modeling and analysis of the capacity decaying function f are
beyond the scope of this paper. As a bounded and monotoni-
cally nonincreasing function in θt, we assume this function is
known to the operator (but not necessarily analytically known).
Note that this is a mild assumption since the capacity versus
remaining throughput curve can be easily estimated based on
a prior experiment by the battery manufacturer [23].

C. Charging and Discharging for Peak Shaving

Depending on its application scenario, the operation of the
BESS can be generally defined. Without loss of generality,
here we consider that the BESS is used for peak shaving in
a dynamic electricity market and is aimed at maximizing the
total peak-shaving value. We denote pt as the electricity price
during period (t, t + 1], and pt ∈ P,∀t, where P denotes the
set of prices. Since we focus on a micro-scale BESS at the
EU side, the operator is considered as a pure price-taker [2].

Recall that the BESS provides its operator the opportunity
of “charging low” and “discharging high.” Specifically, we
define xt = ηcct − (1/ηd)dt as the net energy flow through
the battery. Furthermore, we define the current system state
as ωt = (bt, θt, pt) and denote the whole state space as
	 = B×
×P , where B and 
 denote the spaces of the energy
level and the remaining throughput, respectively. Therefore,
we have bt ∈ B, θt ∈ 
, pt ∈ P and ωt ∈ 	,∀t ∈ T .

We assume that the local demand of an EU is denoted
as Dt,∀t ∈ T , and thus the electricity consumed from the
electricity market by the EU will be Dt,∀t ∈ T , if no BESS
is deployed. However, consider that the EU has a BESS to
perform peak shaving, and its electricity consumed from the
electricity market is denoted as D′

t,∀t ∈ T , then the reward at
each time slot t by performing peak shaving, which is denoted
by V(ωt, xt), can be defined as the net gain as follows:

V(ωt, xt) =
⎛

⎜⎝ptDt − ptD
′
t − α

ηd
(Dt − D′

t︸ ︷︷ ︸
dt

) · I{Dt>D′
t}

− αηc

⎛

⎜⎝D′
t − Dt︸ ︷︷ ︸

ct

⎞

⎟⎠ · I{D′
t≥Dt} − h

⎞

⎟⎠ · I{θt>0}

(4)

4It is possible for some batteries to have a capacity decaying function
in other forms. For instance, starter batteries [19] will result in significant
capacity loss and ultimately in premature failure by repeated deep discharges.
However, this paper focuses on the application of peak shaving and arbitrage
in the smart grid area, and thus typical deep cycle lead-acid batteries and
lithium-ion batteries are mostly appropriate, see the Powerwall BESS from
Tesla [8]. For these types of batteries, it is reasonable to model their capacity
decaying processes as a function of their remaining throughput.
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A(ωt) =
{

xt
∣∣− min{bt − γ1 f (θt, s0, ρ), dmax, θt}

ηd
≤ xt ≤ ηc min

{
γ2 f (θt, s0, ρ) − bt, cmax, θt

}}
, ∀ωt ∈ 	. (6)

where α = (capital cost/θ0) denotes the marginal capital cost
factor and is a proportional coefficient mapping the charge
and discharge profile to the monetary cost. The parameter
h denotes the holding costs of the BESS at each time slot
(see including maintenance cost, air conditioning cost, and
warehousing cost), which is assumed to be known. Note that
I{Dt>D′

t} and I{D′
t≥Dt} are two indicator functions to guarantee

that the BESS cannot be charged and discharged simultane-
ously. To be more specific, if D′

t is larger than Dt, then the
local demand Dt is purely satisfied by buying electricity from
the market and the extra electricity bought ct = D′

t−Dt will be
charged into the BESS. In contrast, if D′

t is smaller than Dt,
then the local demand Dt will be jointly satisfied by buy-
ing electricity from the market and discharging dt = Dt − D′

t
amount of electricity from the BESS. It is worth pointing out
that I{θt>0} is also an indicator function capturing that the oper-
ator cannot gain any more reward when θt = 0 because the
end-of-lifetime has been reached.

One may notice that the reward function V(ωt, xt) is
expressed to be independent of Dt. This is because that the
right-hand side of (4) can be equivalently simplified as

V(ωt, xt) =
((

pt − α

ηd

)
dt − (pt + αηc)ct − h

)
· I{θt>0} (5)

where ct and dt cannot be positive simultaneously and at least
one of them must be zero. As we can see from (5), the net
gain of the BESS in performing peak shaving is indeed inde-
pendent of the local demand Dt,∀t ∈ T . Instead, it is only a
function of the net energy flow xt, or more precisely, a function
of the charging rate ct and the discharging rate dt. Interestingly,
the independence between V(ωt, xt) and Dt indicates that the
net gain of the BESS in performing peak shaving is equiv-
alent to its arbitrage value, i.e., the value obtained through
“buying low” and “selling high” when a reselling market is
available. Similar result has also been proved in [13], in which
the authors proved that for the purpose of calculating the value
of storage, it is sufficient to consider a model without local
demand.

Therefore, in order to make an appropriate decision at time t,
it is sufficient for the battery operator to observe ωt and deter-
mine its feasible net energy flow xt ∈ A(ωt), where A(ωt) is
the feasible action space defined in (6), as shown at the top of
the page. It is worth pointing out here that, when θt = 0, we
have A(bt, 0, pt) = {0}, which means no further charging or
discharging action can be made; or equivalently, keeping idle
is the only feasible action for a dead battery.

D. Performance Metrics for Value and Lifetime

The average value of the BESS, denoted by value in this
paper, is defined as the total expected net gain during the entire
lifetime of the BESS, that is

value
�= max

�
lim

T→∞E

[
T−1∑

t=0

V(ωt, xt)|ω0

]
(7)

where the expectation is taken with respect to the random-
ness of dynamic prices. We use � = [π0, π1, . . . , π t, . . . ] to
denote the vector of policies at different time slots, where pol-
icy π t at slot t denotes a mapping from the system state ωt ∈ 	

to a probability measure Pr
(
xt|ωt
)

on the action space A(ωt).
Note that when policy � is a stationary policy (i.e., time
homogeneous), it can be simply represented by π .

The above definition (7) is a long-term total reward Markov
decision process (MDP) problem. According to [24], we can
equivalently reformulate (7) as follows:

value = max
�

E

⎡

⎣
L(�)−1∑

t=0

V(ωt, xt)|ω0

⎤

⎦ (8)

where the right-hand side of (8) maximizes the total expected
peak-shaving value over the time horizon which stops at epoch
L(�) − 1, where L(�) = min{t|θt = 0} is a random variable
that characterizes the earliest time when the BESS reaches
its end-of-lifetime. From our previous study [17], we know
that the random exit time L(�) denotes the BESSs lifetime.
To keep consistent with the definition of value, we define the
lifetime performance of the BESS by its average lifetime as
follows:

lifetime
�= lim

T→∞E

[
T−1∑

t=0

I{θt>0}|ω0

]
= E[L(�)]. (9)

Note that given the initial state ω0, both the peak-shaving
value and lifetime of the BESS are random variables, so as
a convention, we define value and lifetime to represent their
respective expectation forms. Meanwhile, although the defini-
tion of value here is the total expected peak-shaving value (or
equivalently, the arbitrage value), it can be generalized to cap-
ture other cases. For instance, consider an islanded microgrid
facilitated with a BESS and thermal generators, and the control
objective of this microgrid operator is to minimize the genera-
tion cost. In this case, if the total demand at time t is denoted
as Dt, and the cost function C(Dt) is quadratic or piecewise
linear in Dt, then the reward function V(·) can be formulated
as V(bt, θt, Dt, xt) = (C(Dt) − C(Dt + ct − dt)

) · I{θt>0}, which
is defined as the net gain by smoothing out the demand pro-
file. Note that in this case, the state vector should be changed
to ωt = (bt, θt, Dt) accordingly. However, later in this paper,
we focus on the peak-shaving model and analyze the value
and lifetime performance of the BESS defined in (8) and (9),
respectively.

III. HSPVI ALGORITHM FOR EFFICIENT

COMPUTATION OF AVERAGE VALUE

This section focuses on computing value. For traditional
SSP problems,5 one often faces the “curse of dimensionality”
problem and thus aims to develop computationally tractable

5Please refer to [24] for a rigorous introduction of the SSP problems.
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algorithms [24]. In this section, by exploiting the hidden struc-
ture of (8), we propose an efficient HSPVI algorithm for
computing value. This algorithm also serves as the foundation
for the lifetime analysis in Section IV.

A. Preliminaries of SSP Problems

Following the notations of SSP problems in [24], for all
bt ∈ B and pt ∈ P , state ωt = (bt, 0, pt) is an absorbing state,
and once the battery reaches this state, it will remain there with
no profit or cost incurred anymore. For ease of presentation,
we use set 	ab to denote all the absorbing states and use set
	tr to denote all the remaining transient states. Therefore, the
total state space 	 is the union of 	ab and 	tr, i.e., 	 =
	ab ∪	tr. Given the initial state ω0 ∈ 	tr, (8) requires finding
the optimal policy to reach one of the absorbing states and
yields the maximum total expected reward. For SSP problems,
according to [24], certain conditions are required to guarantee
that, at least under an optimal policy, the absorbing state can be
reached with probability 1. Specifically, we have the following
proposition to guarantee the existence of an optimal stationary
and deterministic policy.

Proposition 1: Problem (8) admits an optimal policy that
is deterministic and stationary. If ∀ωt ∈ 	,π∗(ωt) denotes
the deterministic and stationary optimal policy that maps the
system state ωt to a probability measure Pr

(
x∗|ωt

) = 1 on the
action space A(ωt), then the optimal policy vector �∗ is given
by �∗ = (π∗, . . . , π∗) with the dimension of 1 × L(�∗).

The proof of the stationary policy that is optimal and deter-
ministic is the direct result following [24, Proposition 7.2.1],
and thus is omitted here for brevity. Due to the stationarity of
the optimal policies, we eliminate the time index t for state
variables later on. Suppose that we use J∗(ω) to denote the
optimal cost-to-go function from the dynamic programming
perspective. For each state ω ∈ 	, the optimal policy π∗
satisfies the Bellman equation as follows:

J∗(ω) = max
x∈A(ω)

{
V
(
ω, π∗(ω)

)+ E
[
J∗(ω′)]} (10)

where ω′ = (b + π∗(ω), θ − |π∗(ω)|, p′) and p′ are the possi-
ble system state and the electricity price in the next time slot,
respectively. The above equation can be solved through value
iteration [24]. However, slightly different from the standard
value iteration algorithm, all the absorbing states in SSP prob-
lems are cost free. Therefore, we have J∗(ω) = 0,∀ω ∈ 	ab,
while for other transient states, i.e., ∀ω ∈ 	tr, the optimal
cost-to-go function J∗(ω) can be iteratively determined by

Jn(ω) = max
x∈A(ω)

{
V(ω, x) +

∑

ω′∈	

P
(
ω′|ω, x

)
Jn−1
(
ω′)
}

(11)

where n denotes the iteration index and the transition kernel
P(ω′|ω, x) is defined as

P
(
ω′∣∣ω, x

) = ϑpp′ · I{b′=b+x} · I{θ ′=θ−|x|} (12)

where ϑpp′ denotes the probability of transiting from p to p′
with both p, p′ ∈ P . Here, we assume that ϑpp′ is obtained
through a time-independent estimation based on historical
information.

It is shown in [24] that the value iteration (11) converges
to the optimal value within a finite number of iterations if the
following two reasonable assumptions are satisfied.
A1) There exists at least one policy that reaches the termi-

nation state with probability 1 from any initial state.
A2) For any policy π that does not satisfy A1, the corre-

sponding objective function E
[∑L(π)−1

t=0 V(ωt, xt)|ω0
]

is
−∞ for at least one initial state ω0 ∈ 	.

Assumption A1 just states the fact that the problem admits a
well-behaved solution. This can be verified by a naive policy
that charges at the maximum feasible rate when the price pt

is lower than a fixed value p0 and discharges at the maximum
feasible rate when pt is higher than p0. Note that the policies
that satisfy assumption A1 are known as proper policies [24].
Assumption A2 guarantees that all improper policies incur a
negative infinite reward for at least one initial state. This can
be verified by the fact that a fixed negative reward, i.e., the
holding cost h, will be accumulated after each time slot and
will finally make the total objective function go to negative
infinity if the termination state cannot be reached with prob-
ability 1. Therefore, the value iteration (11) is guaranteed to
convergence according to [24].

B. Structure of HSPVI Algorithm

The value iteration (11) for our proposed SSP is notoriously
known to be unsuitable for systems with a large state space
due to the famous “curse of dimensionality.” In this section,
we propose a computationally efficient technique, namely the
HSPVI algorithm, to reduce the computational complexity of
solving (11). The key idea of our HSPVI algorithm is to parti-
tion the large state space into multiple nonoverlapping groups
of states based on a specific principle, and then to run the value
iteration algorithm within each group of states. To be more
specific, the HSPVI algorithm consists of the following three
key procedures (partitioning, prioritizing, and parallelizing),
which help reduce the search space and speed up the conver-
gence, thus significantly reducing the overall computational
complexity.

1) Step I (Partitioning): Our HSPVI algorithm requires
us to first partition the large state space into multiple small
groups. Specifically, we need the following two procedures.

1) We first partition the total state space into multiple layers
based on values of θ . In each layer i ∈ I, all the states
have the same value of θ , where I denotes the set of
all layer indexes. Suppose that we denote all the states
within layer i by set Li and further order all the layers
in a monotonic way such that a higher layer consists of
states with larger values of θ . Mathematically, we have

Li = {ω|θ = (i − 1)δ},∀i ∈ I (13)

where δ denotes the quantization step-size of θ and b.
Therefore, layer 1 consists of all the absorbing states
and layer |I| consists of all the initial states, i.e., L1 =
{ω|θ = 0} �= 	ab and L|I| = {ω|θ = θ0}. Furthermore,

we know that
⋃

i∈I/{1}Li
�= 	tr.

2) Within each layer i, we further subdivide Li into mul-
tiple groups {Gik}k∈K based on values of b, where
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K = {1, 2, . . .} denotes the set of all group indexes
within each layer. Similar to the above layering defi-
nition, ∀i ∈ I, we have

Gik = {ω|b = b + (k − 1)δ, θ = (i − 1)δ
}
, ∀k ∈ K.

(14)

Therefore, we have
⋃

k∈KGik = Li,∀i ∈ I.
In each layer, the states from group Gi,k cannot transit to any

other groups Gi′,k, i′ ∈ I\{i} since the BESS energy level can
never change without a change in the remaining throughput.
However, they can move to the states within the same group
by keeping the BESS idle. In addition, between two different
layers, the states from group Gi,k cannot transit to any other
groups Gi,k′ , k′ ∈ K\{k} since the remaining throughput can
never change without a change in the energy level. However,
they can move to the states in groups Gi′,k′ , i′ ∈ I\i, k′ ∈ K\k
within the allowance of power constraints.

2) Step II (Prioritizing): We denote the successors of state
ω by H(ω). By successors, we mean those states which are
accessible from state ω. Then, based on the definition of
“absorbing,” ∀ω ∈ L1 = 	ab, H(ω) = {ω}. A key observa-
tion that enables us to simplify the traditional value iteration
algorithm is as follows. If ω ∈ Gik with i ∈ I, k ∈ K, then
H(ω) is a subset of L1 ∪ L2 ∪ · · · ∪ Li−1 ∪ Gik. To make it
more clear, set H(ω) only consists of states that are either
picked from the lower layers or from the same group as ω.
Therefore, starting from the first layer, for any group k in
layer i, i.e., ∀i ∈ I,∀k ∈ K, we can reexpress (11) as follows:

Jn(ω) = max
x∈A(ω)

⎧
⎨

⎩V(ω, x) +
∑

ω′∈Gik

P
(
ω′∣∣ω, x

)
Jn−1
(
ω′)

+
∑

ω′∈H(ω)/Gik

P
(
ω′∣∣ω, x

)
J∗(ω′)

⎫
⎬

⎭,

∀ω ∈ Gik (15)

where J∗(ω′) denotes the converged optimal cost-to-go func-
tions of the states from previous lower layers. As we will
numerically demonstrate in Section VI, the above value iter-
ation significantly speeds up the convergence. In fact, (15)
simplifies the traditional value iteration (11) by the well-
known prioritizing manipulation that stems from the dynamic
programming technique [24], [25].

3) Step III (Parallelizing): Running the iteration of (15) in
a sequential fashion can speed up the convergence. However,
another even more important feature of our partitioning step is
that the states among different groups within the same layer are
in fact independent of each other. Mathematically, this means
that if ω′ and ω are from the same layer Li but different groups
Gik′ and Gik, then ∀x ∈ A(ω), P(ω′|ω, x) = 0. Equivalently,
there is no transition between two groups within the same
layer. Therefore, we can run iteration (15) in parallel, which
further reduces the computational time.

C. Complexity, Convergence, and Bootstrapping Property

Noticeably, the key process of the HSPVI algorithm is that
it parallelly runs value iteration (15) for different groups and

sequentially updates the optimal cost-to-go functions for dif-
ferent layers from the first layer to the last one. In particular,
we have the following remark regarding the complexity com-
parison between the standard value iteration (11) and our
proposed HSPVI algorithm (15).

Remark 1 (Complexity): The dimension of the original
state space is M = |B||
||P|. Assume that the dimen-
sion of the action space is fixed to be |A(ω)| = A, and
then the total complexity of solving (11) is in the order
of O(M2A). However, the complexity of solving (15) is
reduced to O(|P|2A). Note that the complexity reduction from
O(M2A) to O(|P|2A) is significant since the spaces B and 


are typically very large while the price space P often has a
very small size. More fine-grained discretization of the price
space P will yield larger |P|. However, in practical electricity
pricing scenarios, it is rarely to have very fine-grained pricings.
Taking a step back, even if |P| is large, the parallel comput-
ing capability among groups within each layer is still able to
reduce the computational time.

Furthermore, we have the following proposition that guar-
antees the convergence of the HSPVI algorithm.

Proposition 2: The HSPVI algorithm converges to the opti-
mal cost-to-go function J∗(ω) for each ω ∈ 	tr.

Proof: The proof relies on the fact that the parallel value
iteration (15) does not violate the principle of optimality for (8)
and is numerically equivalent to the standard value iteration
algorithm (11) and the standard value iteration (11) is guar-
anteed to converge to the optimal solution of the proposed
problem (8) according to [24]. Please refer to [30] for the
detailed proof.

According to our simulation, the HSPVI algorithm can
significantly speed up the convergence and reduce the compu-
tational time (see Section V-B). We also have the following
remark to further show the advantage of the HSPVI algorithm.

Remark 2 (Bootstrapping): It is worth pointing out that
besides the advantage of parallel computing, another favor-
able advantage of the HSPVI algorithm is its “bootstrapping”
property. Bootstrapping here means that, for multiple batteries
with the same specifications but with different initial energy
throughput θ0, instead of running the tedious value iteration
for each battery repeatedly, we can simply run the parallel iter-
ation (15) by utilizing those optimized cost-to-go functions of
all the states from the calculation of the previous batteries. In
practice, the HSPVI algorithm can cache some of the previ-
ous calculations and finish the computation of a new battery
within even a few seconds.

D. Relationship With Existing Algorithms

It is easy to see that our HSPVI algorithm reduces to the
well-known backward induction method if |P| = 1. Therefore,
the HSPVI algorithm can be considered as an extension of
the backward induction for a higher dimension space. A sim-
ilar idea proposed by Bertsekas and Tsitsiklis [26] is the
space decomposition method, in which two special favor-
able structures are introduced, and both of them allowed a
decomposition of the original SSP problem into a sequence
of smaller SSP problems. Here, in this paper, we introduce



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: SSP FRAMEWORK FOR QUANTIFYING THE VALUE AND LIFETIME OF BES UNDER DYNAMIC PRICING 7

the HSPVI algorithm, whose nature is to exploit the depen-
dencies among different states and find the optimal direction
for value iteration in a highly parallel fashion, thus avoid-
ing the exhaustive iterations over the entire state space. The
HSPVI algorithm shares the same advantages with the space
decomposition method [26]. However, an additional yet much
more important feature of the HSPVI algorithm lies in its
capability of parallel computing. We believe that the idea of
the HSPVI algorithm is very general and can theoretically be
applied to many other similar SSP problems. Meanwhile, the
degree of parallelization becomes higher in applications where
the number of groups within each layer is large.

IV. AVERAGE LIFETIME ANALYSIS BASED ON

UNDERLYING ABSORBING MARKOV CHAIN

Most batteries go to landfills at end-of-life, and thus cre-
ate serious environmental issues due to battery disposal.
Therefore, understanding the lifetime performance of the
BESS makes great sense for the environment [22]. In this
section, we analyze the lifetime of the BESS based on our
previous definition in (9). We first start by providing some
preliminaries of the underlying AMC.

A. Underlying Absorbing Markov Chain

Given an arbitrary initial state ω0, following a proper
policy π , the system states evolves according to a discrete
time finite-state AMC [28]. For the sake of easy presentation,
we give the definition regarding the canonical matrix form of
the AMC as follows.

Definition 1: Suppose that there are r absorbing states and
m transient states for the underlying AMC, which starts from
the initial state ω0 and follows policy π . In addition, let us
label the states in such a way that the transient states come
first. Then, the transition matrix Mπ (ω0) for the AMC can be
represented as the following canonical form:

Mπ (ω0) =
(

Qπ (ω0) Rπ (ω0)

0π (ω0) Iπ (ω0)

)
. (16)

Here, Iπ (ω0) is an r-by-r identity matrix, 0π (ω0) is an r-by-m
zero matrix, Rπ (ω0) is a nonzero m-by-r matrix, and Qπ (ω0)

is an m-by-m matrix.
We illustrate a toy example for the underlying AMC in

Fig. 1. Due to space limitation, we skip the detailed justi-
fication of the underlying AMC for our proposed problem (8).
Interested readers are referred to [28] for a concrete introduc-
tion of the AMC. We next describe our main result regarding
the computation of lifetime.

B. Closed-Form Expression for lifetime

Based on the definition above, the following Lemma 1,
which can be found in [28, Th. 3.2.1], states the fundamental
matrix of the AMC.

Lemma 1: For any AMC denoted by the canonical form
as (16), I−Qπ (ω0) has an inverse matrix. This inverse matrix
is the fundamental matrix of the AMC, and it can be given by

(I − Qπ (ω0))
−1 = I + Qπ (ω0) + Q2

π (ω0) + . . .

Fig. 1. Existence of an underlying AMC with initial state ω0 = (0, 4, 1)

under the corresponding optimal policy π∗. The state space for this simple
example is b ∈ {0, 1, 2}, θ ∈ {0, 1, 2, 3, 4}, and p ∈ {1, 2, 3}, and the action
space is x ∈ {−1, 0, 1}. The three feasible termination states in this underlying
Markov chain is depicted by the three gray circles, and the optimal policy
π∗ for this problem is a stationary mapping function that maps the green-
colored states to charge by 1 unit, the white colored states to keep idle, and
the red-colored states to discharge by 1 unit. The Markov chain for the price
transition is given by P(p′|p) = ϑpp′ , ∀p, p′ ∈ {1, 2, 3}.

where I is an m-by-m identical matrix.
Based on Lemma 1, we have the following Proposition 3,

by which the average lifetime lifetime can be written in a
closed-form expression of matrix Qπ,ω0 .

Proposition 3: If we define N = (I − Qπ (ω0)
)−1 and t =

N1, where I denotes an identity matrix, and 1 denotes a vector
whose entries are all 1. Then, lifetime = t(1), i.e., the average
lifetime lifetime is the first entry of vector t.

Proof: Please refer to [30] for the proof.
The value of lifetime is hard to calculate [24] in general,

because there is no analytical solution for matrix Qπ (ω0).
However, it should be noted that for given ω0 and π , Qπ (ω0)

can be obtained easily by leveraging the proposed state-space
partitioning approach in Section III-B. Therefore, based on
Proposition 3, we can exactly calculate the average lifetime
for the BESS with initial state ω0 under any given proper
policy. Note that based on Proposition 3, this calculation is a
light-weight task and can be executed very fast.

C. Discussion

1) Tradeoff Between Value and Lifetime on BESSs
Operation: The previous analysis of the BESSs value and
lifetime reveals an important interaction between value and
lifetime. On the one hand, if the economic benefit is the
only objective of the battery operator, then he/she can just
choose to use the optimal policy from solving the SSP
problem in (8), without any consideration of the performance
of lifetime. On the other hand, if controlling the lifetime
performance is also a concern of the operator, see prolong-
ing the lifetime for environmental reasons, then the operator
might choose to use another policy [different from the opti-
mal policy from solving (6)]. In this case, the peak-shaving
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(a)

(c)

(b)

(d)

Fig. 2. Value and lifetime performance of a BESS with different holding costs and marginal capital costs. (a) Value performance with values of holding
cost factor h. (b) Lifetime performance with values of holding cost factor h. (c) Value performance with values of marginal capital cost factor α. (d) Lifetime
performance with values of marginal capital cost factor α.

value will be compromised, while the lifetime performance
could be improved. Therefore, operating the BESS to perform
a specific application necessitates a careful tradeoff analysis
between economic benefits and lifetime benefits.

2) Impact of Cost Factors on Value and Lifetime: For most
energy systems facilitated with batteries, the most important
battery characteristics are the battery lifetime and the mainte-
nance requirements. Therefore, it is very important to analyze
how the cost factors α and h influence value and lifetime.
Specifically, for a BESS with fixed physical specifications, we
obtain the following two interesting observations.

Proposition 4 (Impact of Holding Cost Factor h): Given a
BESS with fixed physical specifications, value and lifetime are
strictly decreasing in h.

Proposition 5 (Influence of Marginal Capital Cost
Factor α): Given a BESS with fixed physical specifications,
value is linearly decreasing in α while lifetime is constant
in α.

Proposition 4 shows that a larger holding cost factor
pushes the battery to be charged/discharged more aggres-
sively. Therefore, the lifetime performance becomes worse,
and the value performance also suffers as a result. However,
according to Proposition 5, a larger marginal cost factor
α does not make any impact on the lifetime performance.
Section V presents the detailed numerical results and analysis
for Propositions 4 and 5. Due to space limitation, we have
skipped the detailed proofs for these two propositions here,
and interested readers can refer to [30] for the details.

V. NUMERICAL EVALUATION

In this section, we evaluate the value and lifetime per-
formance for a practical battery with real price data from

two markets, namely the NYISO market in New York [20] and
the Ontario electricity market in Canada [21]. The numerical
results in this section have been validated via both the tradi-
tional GSVI algorithm6 and our proposed HSPVI algorithm,
and the efficiency comparisons between these two algorithms
are presented. In the following, we start by describing the
BESS specifications, price data sets, and some implementation
details.

A. Data Preprocessing and Implementation

The lead-acid battery is currently the most mature and
widely used in energy systems, and thus we choose
to perform our simulation on a typical lead-acid bat-
tery [19]. Without loss of generality, we choose a battery
with (s0, cmax, dmax, θ0, ηc, ηd) = (20 kWh, 4 kW, 2 kW,
8000 kWh, 0.9, 0.9), based on the state-of-the-art lead-acid
battery technology,7 and the cost factors are chosen to be
(h, α) = (0 ∼ 1.2 cents/h, 0 ∼ 0.8 cents/kWh), based on [4].
Note that h = 0 means that the battery is maintenance free.
Similar to [12] and [17], we first discretize the state space by
quantizing the battery energy level with a stepsize of 1 kWh
and the price data with a stepsize of 5 cents. Then, we use
a training window of one year and estimate the transition
matrix for the price dynamics. Note that this can be done
offline. All the algorithms are implemented by Python 3.4 on
an Intel i7-4770K CPU, 16G RAM PC.

6The GSVI algorithm implements the standard value iteration algorithm in
the Gauss–Seidel flavor, which is still a traditional value iteration algorithm
but achieves a faster convergence rate [29].

7Note that θ0 = 8000 kWh with s0 = 20 kWh means that if the
battery is operated with DoD = 60 %, then its cycle lifetime will be
600–700 cycles [19].
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Fig. 3. Value and lifetime performance comparison between the SSP and
MDP models based on Monte Carlo simulation. We generate 3000 price sam-
ple traces based on the trained transition matrix with price data from the
NYISO market, and then simulate on the chosen battery with α = 0.1 and
h = 0.4. Each symbol in the figure corresponds to the result of a price sample
trace.

We focus on demonstrating the value and lifetime perfor-
mances of the chosen BESS with respect to the holding cost
and the marginal cost factors. To further illustrate the impor-
tance of lifetime performance, we also show how the value
and lifetime performances degrade if the lifetime factor is not
taken into account. Due to space limitation, we do not show the
numerical results to demonstrate the optimality of the obtained
policy and its structures. Interested readers please refer to [17].

B. Numerical Results and Discussions

1) Value and Lifetime Performance: We show the value and
lifetime performances of the battery in Fig. 2. Specifically,
from Fig. 2(a) and (c), we can see that the average value
decreases if its holding cost and marginal cost factors increase,
which is consistent with our intuition. In terms of lifetime per-
formance, Fig. 2(b) and (d) shows that, when the holding cost
increases, the average lifetime decreases very fast at the begin-
ning and finally becomes almost constant, while the marginal
cost factor does not make any impact on the average lifetime.
Therefore, a smaller holding cost factor can simultaneously
improve the value performance and the lifetime performance.
However, in contrast, investing effort on reducing the marginal
cost (see choosing another battery with a lower marginal cost
factor) can improve the value performance, but its lifetime per-
formance will not be improved as long as the price dynamics
are fixed. One interesting observation is that, the average value
decreases linearly with the same slope when the marginal cost
factor increases, while nonlinearly with respect to the increas-
ing of the holding cost factor. Note that this is important since
different battery operators may have different objectives (eco-
nomic driven or environment driven, etc.); hence, to balance
the value and lifetime tradeoff, it requires the operators to
optimally invest effort on reducing the more crucial cost factor.

2) Importance of Lifetime Management: It is very interest-
ing and important to show the value and lifetime performance
for the econometric models that do not take into account the
battery’s lifetime impact. In this paper, the infinite horizon
long-term average MDP model is often applied to obtain the
corresponding optimal control policy (to be abbreviated as

Fig. 4. CPU time comparison between the conventional GSVI algorithm and
our proposed HSPVI algorithm. We perform seven times of simulation with
the sizes of state space increase from index 1 to index 7. The number on top
of each bar is the CPU time.

the MDP model later on) when the battery’s lifetime factor
is neglected. Mathematically, instead of maximizing the total
expected peak-shaving value over the entire battery lifetime,
the MDP model maximizes the long-term average reward, i.e.,
π∗ = arg maxπ lim supT→∞(1/T)E

[∑T−1
t=0 V(ωt, xt)

]
. Note

that the state variable ωt is redefined to be ωt = (bt, pt) since
the LET is not taken into account, and the action space is
also slightly changed accordingly. The optimal policy π∗ for
the above MDP problem can be solved by relative value iter-
ation [24]. Based on the corresponding optimal policy of this
MDP model and that of our proposed SSP model, we apply
both of them into a real battery when its lifetime is actually
limited based on the Ah-throughput model, i.e., we substitute
the above policy π∗ into definitions (8) and (9) and obtain
the value and lifetime based on Monte Carlo simulation. The
value and lifetime performance comparison between the SSP
and MDP models is shown in Fig. 3. The performance of the
SSP model significantly outperforms the MDP model by yield-
ing much longer lifetime and much larger value on average.
Therefore, the MDP model overestimates the value of a BES
by assuming an infinite lifetime, and as a result, the associ-
ated “optimal” policy turns out to be extremely suboptimal
when the lifetime is actually limited. As a general conclusion,
neglecting the interaction between lifetime and operational
policy may significantly degrade the value and shorten the
lifetime of the battery.

3) Computational Efficiency Comparison: To show the
advantage in computational efficiency of our HSPVI algo-
rithm, we compare it with the GSVI algorithm in solving (8).
Fig. 4 shows the detailed comparison results. For easy pre-
sentation, we increase the system state space by varying θ0
while keeping the other two entries b and p fixed. As shown
in Fig. 4, the CPU time by our proposed HSPVI approach
completely outperforms that of the traditional GSVI algo-
rithm, with a minimal speedup of 12.5 times (when θ0 = 50
that corresponds to simulation index 1). This speedup can
even be much more significant when the state space is larger.
For example, in the larger state space case that corresponds
to simulation index 7, our proposed HSPVI algorithm has a
speedup more than 30 times that of the GSVI algorithm.
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VI. CONCLUSION

In this paper, we have proposed a novel econometric model
to quantify the average peak-shaving value and the average
lifetime of a BESS under a dynamic electricity market. In addi-
tion to the power and capacity constraints, we explicitly took
the lifetime constraint into consideration, and formulated the
value-maximization problem as an SSP problem. By exploit-
ing the hidden structure of the SSP problem, we first proposed
a parallel algorithm, namely the HSPVI algorithm, to make
the SSP problem computationally tractable. The HSPVI algo-
rithm has a fast convergence property and does not require
any approximation, which provides an efficient and system-
atic approach for quantifying the value of a BESS. Based
on the underlying AMC of the proposed SSP problem, we
derived a closed-form expression for the average battery life-
time, which makes the computation of the average lifetime
very efficient. We discussed the tradeoff between the average
value and the average lifetime for a BESS and demonstrated
various practical insights through extensive numerical results.
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